Solution accelerators for large-scale three-dimensional electromagnetic inverse problems
نویسندگان
چکیده
We provide a framework for preconditioning nonlinear three-dimensional electromagnetic inverse scattering problems using nonlinear conjugate gradient (NLCG) and limited memory (LM) quasi-Newton methods. Key to our approach is the use of an approximate adjoint method that allows for an economical approximation of the Hessian that is updated at each inversion iteration. Using this approximate Hessian as a preconditioner, we show that the preconditioned NLCG iteration converges significantly faster than the nonpreconditioned iteration, as well as converging to a data misfit level below that observed for the non-preconditioned method. Similar conclusions are also observed for the LM iteration; preconditioned with the approximate Hessian, the LM iteration converges faster than the non-preconditioned version. At this time, however, we see little difference between the convergence performance of the preconditioned LM scheme and the preconditioned NLCG scheme. A possible reason for this outcome is the behaviour of the line search within the LM iteration. It was anticipated that, near convergence, a step size of one would be approached, but what was observed, instead, were step lengths that were nowhere near one. We provide some insights into the reasons for this behaviour and suggest further research that may improve the performance of the LM methods.
منابع مشابه
A parallel method for large scale time domain electromagnetic inverse problems
In this work we consider the solution of 3D time domain electromagnetic inverse problems. Solving such problems is an open challenge as they require very high computational resources. We therefore explore a method to parallelize the inverse problem by using time decomposition. We show that our approach can reduce the computational time although it does not scale optimally.
متن کاملA Compromise Decision-making Model for Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty
This paper proposes a compromise model, based on the technique for order preference through similarity ideal solution (TOPSIS) methodology, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. This compromise programming method is ba...
متن کاملA New Compromise Decision-making Model based on TOPSIS and VIKOR for Solving Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty
This paper proposes a compromise model, based on a new method, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. In this compromise programming method, two concepts are considered simultaneously. First of them is that the optimal ...
متن کاملParallelization of a Constrained Three-Dimensional Maxwell Solver
The numerical solution of very large 3D electromagnetic field problems are challenging for various applications in the industry. In this paper, we propose a nonoverlapping domain decomposition approach for solving the 3D Maxwell equations on MIMD computers, based on a mixed variational formulation. It is especially well adapted for the solution of the Vlasov-Maxwell equations, widely used to si...
متن کاملA Compromise Decision-Making Model Based on TOPSIS and VIKOR for Multi-Objective Large- Scale Nonlinear Programming Problems with A Block Angular Structure under Fuzzy Environment
This paper proposes a compromise model, based on a new method, to solve the multiobjectivelarge scale linear programming (MOLSLP) problems with block angular structureinvolving fuzzy parameters. The problem involves fuzzy parameters in the objectivefunctions and constraints. In this compromise programming method, two concepts areconsidered simultaneously. First of them is that the optimal alter...
متن کامل